

Michael Kelly
mkelly01@my.fit.edu

Keith Johnson
kjohns07@my.fit.edu

Eric Wells
wellse@my.fit.edu

Faculty Sponsor
Dr. William H. Allen

wallen@cs.fit.edu

mailto:mkelly01@my.fit.edu
mailto:kjohns07@my.fit.edu
mailto:wellse@my.fit.edu
mailto:wallen@cs.fit.edu

SNO: Super Nintendo Online
Design Document

1

What is SNO?
SNO is a Super Nintendo emulator written in Java. It is intended to be embedded into websites

to allow users to play games developed for the Super Nintendo within their browser.

There are two primary user classes for SNO:

 Host: A host is someone who embeds SNO onto their website. They will be required to

have access to a web server so that they may host the executable and any ROMs or save

state files that they wish to share.

 Player: A player is a user visiting the host’s website. They interact with SNO and actually

play a game on the emulator.

Core Design Principles

 The software will emulate hardware functionality of the SNES directly, as opposed to

recompiling ROM code or other techniques.

 Although the software shall be coded in Java, we will favor efficient, to-the-point code

over over-designed, “Java-esque” code.

System Overview
SNO is comprised of two main subsystems: the Core SNES system and the Frontend Java

system. The Core SNES system is a software emulation of the SNES hardware. It concerns itself

only with emulating the functionality of the SNES. The Frontend Java system comprises the

second half of the program, and translates the output of the SNES system to the frontend

displayed to the user.

SNO: Super Nintendo Online
Design Document

2

SNES Core

Java Frontend

CPU

Memory

PPU

Sound CPU

DSP

Video
Translation

Layer

Sound
Translation

Layer

Applet Frontend

Controller ROM Loader Save/Load

Figure 1: System Block Diagram

Block Diagram Components

 Java Frontend

o Applet Frontend: Java frontend that the user interacts with. Handles video and

audio output, user input, and other user-facing functions.

o Controller: Stores the current state of the SNES controller. The frontend changes

this state depending on user input, and the CPU polls this state to set the correct

values in memory where the controller state is stored in the SNES.

o ROM Loader: Retrieves a ROM file from either a specified URL or the user’s local

computer and loads it into the SNES memory.

SNO: Super Nintendo Online
Design Document

3

o Save/Load: Handles serialization of both the SRAM (for normal, game-managed

saving) and of system state (for save states).

o Sound Translation Layer: Hooks into the sound system within the SNES Core and

translates the output sound into a format that can be played by the applet

frontend.

o Video Translation Layer: Hooks into the video system within the SNES Core and

translates the video output into a format that can be displayed by the applet

frontend.

 SNES Core

o CPU: Represents the 65816 CPU within the SNES. Processes instructions in the

ROM code, as well as managing timing and triggering other systems within the

SNES Core when needed.

o DSP: Digital Signal Processor. Generates the 16-bit sound waveform that the

SNES outputs for sound. The DSP is controlled by the Sound CPU;

o Memory: Stores data in the various parts of RAM (detailed later in this

document).

o PPU: Picture Processing Unit. Manages video output for the SNES including

sprites and backgrounds currently being displayed.

o Sound CPU: Represents the SPC700 CPU that runs programs that manipulate the

DSP, producing sound.

Data / Memory Maps
Unlike a traditional application, the data store used by an emulator is the implementation of

the system’s memory. In SNO, the Memory interface defines how other parts of the system

interact with the memory, while implementing classes determine the actual layout of memory.

LoROM vs. HiROM

There are two major memory maps used by most SNES games: Mode 20 and Mode 21, which

are also known as LoROM and HiROM respectively. The main difference between the two

modes is that LoROM uses 32-kilobyte chunks for mapping memory addresses to ROM data,

while HiROM uses 64-kilobyte chunks. HiROM removes a few sections of memory as well to

allow for more overall ROM data to be mapped.

FastROM vs. SlowROM

In both HiROM and LoROM modes, the layout of memory is mirrored after bank 0x80. This

means that accessing bank 0x80 is the same as accessing bank 0x00, bank 0x81 is the same as

bank 0x01, and so on.

SNO: Super Nintendo Online
Design Document

4

The difference between the two sections of memory is that addresses below bank 0x80 are

considered SlowROM, while addresses within or above bank 0x80 are FastROM. The difference

between the two is that SlowROM can only be accessed by the processor while it is running at

2.68 Mhz, while FastROM can be accessed at 2.68Mhz or 3.58Mhz.

Memory Map Diagrams

Below are memory maps for LoROM and HiROM. Please note the following:

 A block’s color indicates its location within the hardware. In addition, faded colors

signify memory that is mirrored from another section in memory. This means that there

is another memory block with a non-faded color that this block mirrors.

 If a block has the (Mirrored) label in its text, it means that the memory addresses refer

to the same thing regardless of the bank you access in. For example, WRAM in LoROM

mode is mirrored across banks 0x00 through 0x3F; this means that the data will be the

same in all those banks, and changes will reflect across them.

 The FastROM segment in both LoROM and HiROM is a mirror of the SlowROM segment,

except for the last two banks, which hold extra ROM data that cannot be read in the

SlowROM segment.

SNO: Super Nintendo Online
Design Document

5

SlowROM (2.68 Mhz)

00-0F 10-1F 20-2F 30-3F 40-4F 50-5F 60-6F 70-7D

ROM Chunk (32k per bank)

SRAM
Bank 70

(32k)

Bank

$0000

$2000

$8000

Expansion (8k, Mirrored)

Hardware Registers (16k, Mirrored)

WRAM (8k, Mirrored)

7E

Extended
RAM
(32k)

7F

High
RAM
(24k)

WRAM
(8k)’

Extended
RAM
(64k)

Cartridge ROM/RAM

Color Key (Color defines type)

SNES RAM

SNES Components

Cartridge Components

FastROM (2.68 Mhz or 3.58 Mhz) (Mirrored)

80-8F 90-9F A0-AF B0-BF C0-CF D0-DF E0-EF F0-FD

ROM Chunk (32k per bank)’

Expansion (8k, Mirrored)’

Hardware Registers (16k, Mirrored)’

WRAM (8k, Mirrored)’
$0000

$2000

$8000

Bank FE FF

ROM Chunk
(32k per bank)

Mirror

Mirror

Mirror

Mirror

Figure 2: LoROM Memory Map

SNO: Super Nintendo Online
Design Document

6

ROM Chunk (32k per bank)
(Mirror of upper half of banks C0-FD)’

Expansion
(8k, Mirrored)

SRAM
Bank 20

Expansion

SlowROM (2.68 Mhz)

00-0F 10-1F 20-2F 30-3F 40-4F 50-5F 60-6F 70-7DBank

$0000

$2000

$8000

Hardware Registers (16k, Mirrored)

WRAM (8k, Mirrored)

7E 7F

Cartridge ROM/RAM

Color Key (Color defines type)

SNES RAM

SNES Components

Cartridge Components

FastROM (2.68 Mhz or 3.58 Mhz) (Mirrored)

80-8F 90-9F A0-AF B0-BF C0-CF D0-DF E0-EF F0-FD

Hardware Registers (16k, Mirrored)’

WRAM (8k, Mirrored)’
$0000

$2000

$8000

Bank FE FF

Mirror

Mirror

Mirror

Mirror

ROM Chunk (64k per bank)’
ROM Chunk

(64k per bank)

ROM Chunk (32k per bank)
(Mirror of upper half of banks C0-FD)’

ROM Chunk (64k per bank)

Extended
RAM
(32k)

High
RAM
(24k)

WRAM
(8k)’

Extended
RAM
(64k)

Expansion
(8k, Mirrored)’

SRAM
Bank A0'

Expansion’

Figure 3: HiROM Memory Map

SNO: Super Nintendo Online
Design Document

7

Sectors of Memory

 WRAM: An 8k sector of RAM that is mirrored wherever it appears. In other words, no

matter what bank you access WRAM from; you will always be accessing the same 8k of

RAM.

 Hardware Registers: Game code can use the CPU to communicate with hardware like

the PPU or the Sound CPU by storing data in certain addresses within this sector. Instead

of writing the data to memory, the CPU sends the data to the appropriate piece of

hardware.

 Expansion: Special addresses reserved for communicating with expansion hardware

included on certain game cartridges, such as the Super FX chip.

 SRAM: SRAM is a volatile form of RAM that requires a very low charge to retain data.

Game cartridges use SRAM and a small battery to store saved games on the cartridge.

This area of memory maps to the cartridge SRAM.

 ROM Chunk: Maps to ROM memory on a game cartridge. This is where the actual code,

sound, and graphics for a game are mapped.

 High RAM: Normal system RAM used by the SNES.

 Expansion RAM: Normal system RAM used by the SNES.

Implementation Details

CPU

Each instruction for the SNES CPU will be an anonymous inner class that implements the

Instruction interface. Each class instance will contain the logic for the instruction as well as the

argument count; arguments are passed to the instruction as method parameters. The

instructions will be grouped into classes according to their function such that similar functions

will be part of the same class. The instructions are static member variables of the class they

belong to.

The CPU class will store these instructions in a jump table. A jump table, in the context of SNO,

is an array that stores references to the static member variables that store CPU instructions.

The array index represents the opcode for each instruction. Thus, to perform an instruction, the

CPU simply reads the opcode and retrieves the element at that index in the jump table.

Sound

The sound system is divided into two components: the SPC-700 sound CPU and a DSP. The SPC-

700 is a co-processor that communicates with the main CPU through four 8-bit IO ports that are

mapped to four locations in memory. The SPC-700 will be implemented using a similar class

setup as the main CPU, but with a different instruction set and different memory bank.

SNO: Super Nintendo Online
Design Document

8

The DSP generates a 16-bit sound wave by reading the state of a set of 8 “voices” stored in the

sound system’s memory.

Video

The PPU in the SNES stores the current state of 4 BG layers that are filled with tiles, as well as a

set of 128 sprites that can be displayed on screen along with the BG layers. The PPU uses this

data to determine the color of each position on the screen and sends this data to the television.

Our PPU implementation will use an internal graphics buffer upon which the sprites and

background data will be drawn once per frame. This buffer will then be transferred to the

frontend, which will handle display of the newly-drawn buffer. The PPU will both store the

video data and process it, rather than storing the data in the memory module.

User Interface
Figure 4 shows a mockup of our main user interface. It includes a web page with SNO

embedded into it, along with a dropdown box for selecting a game to play. The black box that

displays a screen from Super Metroid is the only part of the screen that is actually displayed by

the applet; the other page elements are extra features of the web page itself, not of SNO.

Figure 4: User Interface Mockup

